If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+12x-477=0
a = 12; b = 12; c = -477;
Δ = b2-4ac
Δ = 122-4·12·(-477)
Δ = 23040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23040}=\sqrt{2304*10}=\sqrt{2304}*\sqrt{10}=48\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-48\sqrt{10}}{2*12}=\frac{-12-48\sqrt{10}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+48\sqrt{10}}{2*12}=\frac{-12+48\sqrt{10}}{24} $
| 2x+8x/2=12 | | 22=-3y7 | | 7+14x=35 | | 7x+2x=2x-13 | | 1/2x-75=-50 | | 2x+6=225 | | 35=n-2.2 | | 12-2x=16+2x | | 65-3y=27 | | −3(1+4x)=−3−x | | 6x-42(7)= | | 12=e+8 | | x÷3=18 | | V(d)=3^1.5d | | V(5)=3^1.5d | | 10y/4=20 | | 3p=90p= | | 8x–12=-36 | | 1+5r−1+r=−18 | | 7=k-15 | | 9y/4=8 | | 5mm=11 | | (8+n)/12=1 | | 4x^2+12=35 | | 3a+66=129+30 | | -u/6=-34 | | 11=a-9 | | g(2)=5(2)-4 | | 34=6.5(2)+l(2) | | 16=13u-5u | | 3=g–6 | | g(-3)=5(-3)-4 |